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To the memory of G. de Rham, my teacher in mathematics.

Abstract. The freedom in choosing finite renormalizations in quantum field theories (QFT) is character-
ized by a set of parameters {ci}, i = 1 . . . , n . . ., which specify the renormalization prescriptions used for
the calculation of physical quantities. For the sake of simplicity, the case of a single c is selected and
chosen mass-independent if masslessness is not realized, this with the aim of expressing the effect of an
infinitesimal change in c on the computed observables. This change is found to be expressible in terms
of an equation involving a vector field V on the action’s space M (coordinates x). This equation is often
referred to as “evolution equation” in physics. This vector field generates a one-parameter (here c) group
of diffeomorphisms on M . Its flow σc(x) can indeed be shown to satisfy the functional equation

σc+t(x) = σc(σt(x)) ≡ σc ◦ σt

σ0(x) = x,

so that the very appearance of V in the evolution equation implies at once the Gell-Mann-Low functional
equation. The latter appears therefore as a trivial consequence of the existence of a vector field on the
action’s space of renormalized QFT.

The so-called “Renormalization Group” (RG) in physical
science was, from its early beginnings [1], the theory that
describes the geometry of action space. In this space the
covariance of physical quantities turns out to be manifest.

This paper is intended to be an overview of the RG
as it is used by physicists, especially in Quantum Field
Theory (QFT). However, the emphasis will be put on the
geometry (as said before) of the space of actions, with a
view, among other things, on how a functional equation,
derived in [2], becomes a simple and trivial consequence of
the geometrical set-up developed below by means of QFT
manipulations.

Of paramount importance has been the discovery [1]
that renormalized physical quantities satisfy equations in
which the basic geometrical object is a vector field defined
in the action space M . Let V be this vector field. Then the
theory of differentiable manifolds [3] implies, due to the
very existence of a vector field, a set of theorems, lemmas
and corollaries which exhausts all that can be said about
the renormalization group in physical applications. In gen-
eral, one deals with a set of parameters {ci} but, in the
following, we shall restrict this set to a single parameter,
denoted t for practical reasons. This restriction is mainly
dictated by the fact that one wants to be able to make
direct comparisons with [2] which uses a single parameter
in its fixing of renormalization prescriptions. Thus, in the
single parameter case, we have amongst others the follow-
ing theorems.

Theorem I. A smooth vector field V on a compact
manifold M generates a one-parameter group of diffeo-
morphisms of M .

Theorem II. Suppose V is a Cr vector field on the
manifold M , then for every x ∈ M , there exists an integral
curve of V , t → σ(t, x) such that

1. σ(t, x) is defined for t belonging to an interval I(x)cR,
containing t = 0 and is of class Cr+1 there.

2. σ(0, x) = x for every x ∈ M
3. Given x ∈ M , there is no C1 integral curve of V defined

on an interval properly containing I(x), and passing
through x (i.e. such that σ(0, x) = x).

From the uniqueness property 3, follows at once

Theorem III. If s, t and s+ t ∈ I(x), then we have the
functional equation

σ(s + t, x) = σ(t, σ(s, x)) . (1)

Flow: The set of pairs (x, t), x ∈ M, t ∈ I(x) is an open
subset of M × R containing x, hence a smooth manifold∑

, of dimension n + 1. The mapping σ:
∑

v → X by
(x, t) → σ(t, x) is called the flow of the C1 vector field V .
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If M and V are C∞, the flow is also of class C∞. Writing
σ(t, ·) ≡ σt : x → σ(t, x); (1) can be written

σs+t = σt ◦ σs ; σ0 = e . (2)

The set of mappings {σt} is the one-parameter group men-
tioned by Theorem I, provided, as is the case for our con-
cern, I = R. (It is obvious that each element σt has an
inverse σ−t so that σt ◦ σ−t = e)1.

According to the few theorems given up to now, one
sees that the vector field V is the key concept, generating
a flow σ(t, x) ≡ σt(x) in M . Since the σt, with fixed t, is a
diffeomorphism M → M , it represents the one-parameter
Abelian group according to (2). Therefore, V can be seen
as the infinitesimal generator of the flow group σt. Indeed,
for t infinitesimal, say 0+δt, we have the infinitesimal flow

σ0+δt(x) = σ0(x) + δtV (x) + O(δt2)

(with σ0(x) = x), by Taylor expending σ(δt, x) around
δt = 0, so that

σ(0 + δt, x) − σ(0, x)
δt

= V (x) .

Or, taking the limit δt → 0

dσ(t, x)
dt

∣∣∣∣
t=0

= V (x) . (3)

V (x) is therefore, as we said at length before, the infinites-
imal generator of the flow group. Then, by exponentiation,
one gets

σ(t, x) = exp[tV ] · x

which fulfils, as expected

a) σ(0, x) = x
b) d

dtσ(t, x) = V exp[tV ] · x = V (σ(t, x))
c) σ(s + t, x) = σ(t, σ(s, x))

(Remember the operator nature of V , which can be ab-
breviated V = V α ∂

∂xα .)
The elementary considerations made up to now, would

be sufficient for the current applications of the RG to QFT
since, as is well-known, the one-parameter t is the loga-
rithm of a scale µ, and d

dt → µ d
dµ , which is the Abelian

generator of the one-parameter group for scale transfor-
mations of the subtraction point.

The appearance of the arbitrary dimensional parame-
ter µ2 cannot be avoided and is the source of the break-
down of conformal and scale invariances in classical confor-
mal invariant Lagrangians. The deep source of this anoma-
lous breakdown is traced back, as is well-known, in the
procedure of the second quantization [4]. In this reference,
R. Jackiw notices “ . . . we may say that our present point

1 For a sample of textbook’ references involving the funda-
mentals of differential geometry as well as rigorous proofs of the
topics advocated here and beyond these topics, see the item:
Textbooks in the references at the end of the paper

2 In physics, µ is generally called “subtraction point”

of view towards scale and conformal symmetry breaking
was prefigured by Bohr’s intuition concerning effects of
quantization on space-time symmetries.”

In conclusion, in order to fix the ideas in the present
“physical” notations, V is expressed as

V = βa(g) · ∂

∂ga
; a = 1 . . . κ ,

if there are κ couplings in the considered theory. g ≡ {ga}
is the set of couplings and {βa(g)} that of the components
of the vector field.

We see therefore that the βa are the components V α of
V and the ga, the coordinates xα of M (called in physics
the action space). Finally, the components of the flow
in this space are denoted ḡa(t, g), corresponding to the
σα(t, x) components of the flow σ(t, x) on M .

So that, since, as we have seen, V is the infinitesimal
generator of the one-parameter flow group on M , βa ∂

∂ga

is the one-parameter flow group infinitesimal generator
on action space. As a flow, ḡ(t, g) can be obtained from
the exponentiation of V = βa ∂

∂ga (see the example in the
Appendix A). It therefore satisfies the functional equation
(1) as expected, namely:

ḡ(t + s, g) = ḡ(t, ḡ(s, g))

with ḡ(0, g) = g as boundary condition3.
The fundamental equation for QED S-matrix elements,

already quoted in its simplest formulation in the Abstract
of [1], and which has been mentioned in this paper as the
equation introducing in physics a vector field V was

∂

∂ci
S(x . . . m, e, ci)

∣∣∣∣
ci=0

= hi.e.(e)
∂

∂e
S(x . . . , m, e) (4)

or, in the simplified case (one single c: c0 = t) of this paper

∂

∂t
S(pj . . . m, e, t)

∣∣∣∣
t=0

= V · S(pj . . . m, e) (5)

(the pj being a conjugate momenta of the x′
s in (4)), with

of course V = h0(e) ∂
∂e .

Notice that the index i has been dropped in the for-
mulation of this paper, since it stands for the numbering
of the various arbitrary normalization conditions.

To our knowledge, the first author who took into con-
sideration the general case [1] with several parameters ci

is Crewther [5]. His analysis is confined to a finite set
of normalization conditions R(ci), and he put forward the
very simple argument that it is sufficient to consider trans-
formations in the ci-space possessing the group property,
which warrant a satisfactory rule for this special subset
R(ci) of normalization conditions to have the group prop-
erty. This is what was called “normalization group” in [1].

3 In [2], ḡ(t, g) is expressed as e2d(t, e2), with t =
log(κ2/λ2) ≡ log x2 in their notations. e2 stands for g up to a
change of coordinate since the QED case is investigated, with
one single parameter λ, as in the formulation of the present
paper
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So the group property is a feature of many subsets of the
whole set of prescriptions, G, but certainly G itself (the
countable infinite set of prescriptions) does not, strictly
speaking, possess this property.

A very popular set of prescriptions are the so-called
“mass independent schemes”, for which the normalization
factors are computed with the bare mass set equal to zero.
Then the renormalized mass is treated like a renormalized
coupling [6]. In accordance with näıve dimensional anal-
ysis, the vector field components can only depend on the
couplings [7]. In this set one finds, among others, dimen-
sional regularization supplemented by minimal subtrac-
tion (MS) or its cousin MS. This mass-independent set
of prescriptions possesses the group property. Several au-
thors [8] tried to tackle the case when the ci are infinite
in number, especially with the aim of optimizing the per-
turbation series truncated at a given order. Although the
possible group property in these extreme cases has not
been addressed, these authors established that the most
general coupling constant g(c1, c2, . . . c∞) depends, as we
wrote, on the countable infinity of ci and were able to
show in a particular case that the ci are linear in the bi,
the numerical coefficients in the expansion in g of the vec-
tor field component β(g) =

∑∞
i=n big

i, n = 1, 2 . . .. These
coefficients are well-known for their dependence on the
prescription used. In other words, geometrically, they de-
pend on the choice of the coordinate {ga} in action space.
However, the choice of a system of reference is arbitrary
and the above results do not shed light on which sets, if
any, enjoy the group property in a Banach space.

In conclusion, the passage from a single parameter
c0 ≡ t considered in this paper, to several ci, or an infinity
of them, is not straightforward. Again we might be able
to consider, as was done in [1], sets of transformations in
the ci space which possess the group property. This prob-
lem involves the theory of several parameter Lie groups
of transformations and lies beyond the modest scope of
this paper. Nevertheless, a few guidelines will be given
in Appendix B in a very concise and not mathematically
rigorous way.

Appendix A

As a very simple example, we take, for the vector field
V ⇐⇒ β(g) ∂

∂g in a one-dimensional action space (coordi-
nate g), the first term of β(g) in a g expansion, say

β(g) = bg2 .

The exponential exp{tV } · x is defined by its Taylor ex-
pansion

exp{tV } =
∞∑

n=0

(tV )n 1
n!

From

V V → bg2 ∂

∂g

(
bg2 ∂

∂g

)
= 2b2g3 ∂

∂g
+ b2g4 ∂2

∂g2

it is straightforward to deduce

V V . . . V︸ ︷︷ ︸
n factors

= n!bngn+1 ∂

∂g
+ O

(
∂n

∂gn
, n ≥ 2

)
.

Therefore

ḡ(t, g) = exp{tV }g =
∞∑

n=0

tnbngn+1 =
g

1 − tbg
,

a well-known result.
As an exercise, the reader can establish, according to

the above, the approximate Bogoljubov-Shirkov relation
in the next order for ḡ(t, g) [9]

ḡ(t, g) = g[1 − b1gt +
b2

b1
g log(1 − b1gt)]−1

by taking
β(g) = b1g

2 + b2g
3 .

A second exercise is to show that

exp{tV }gn = ḡn(t, g) =
gn

(1 − gbt)n

when the vector field V = β(g) ∂
∂g is approximated by the

first term in the g expansion of β(g) i.e. β(g) = bg2, like
in the first example.

Since S-matrix elements can be expanded in powers
of g

S(pi, g) =
∞∑

n=0

an(pi)gn

it follows that

exp{tV } · S(. . . g) = S(. . . ḡ)

(pi and the dots stand for arguments other than g and
independent of it. The case when other couplings, like gi

and masses mi occur, goes outside the one-dimensional
action space and V becomes V = V α ∂

∂xα , the xα being
the coordinates in the enlarged action space, namely the
gi and mi above.)

Appendix B

The passage from a one-parameter case to the case with
several parameters ci is far from trivial, although treated
at length in the Textbook references, especially [T.1]–
[T.4]. Sketching what happens, from an element g depend-
ing on one parameter g(t)·g(s) = g(s+t) with g(t) = 1+tV
for t infinitesimal one goes to

g(t1, . . . ti) = 1 + t1V 1 + t2V 2 + . . . tiV i

with all ti infinitesimal. (i generators V i)
The combination of two such elements g(t1, . . . t1) ·

g(s1, . . . si) is given by the well-known Baker-Campbell-
Hausdorf formula.
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For the product to be also an element of the set, the
condition [V i, V j ] = cκ

ijV κ is necessary and sufficient. It
was a condition explicitly formulated in [1] for a set of
normalization conditions to form a group. For our concern,
the g(t) are connected with the flow σt(·). Therefore the
group property concerns the flows, as in the one-parameter
case discussed in this paper.

The non-trivial aspect now is that we must distinguish
between the left combination of g(ti) with g(si) from the
right combination. All this is treated in the mentioned
textbooks and goes beyond the scope of the present mod-
est account of vector fields.
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